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ANALYSTIS OF TEMPERATURE FIELDS OF BODIES IN THE SHAPE OF SHELLS

N, M. Belyaev, V. I, Zavelion, UDC 536.24:539.3
and A, A, Ryadno

The temperature fields in axisymmetric thick-walled shells with different middle
surface shape are investigated,

In performing thermal engineering analyses of metallurgical or power equipment there
often occurs the need to solve heat conduction problems for bodies in the shape of shells.
In these cases it is natural to use shell theory methods [1-3]. The nonclassical theory of
shells [2], whose equations are valid for nonthin shells with rapidly varying geometry and
thickness, is used below to determine the nonstationary temperature field of a unified slag
car cup.,

A slag car cup is an axisymmetric thick-walled shell formed by a spherical segment con-
nected to a hollow truncated cone of linearly varying thickness; hence, the boundary condi-
tions will also be axisymmetric, which permits solution of the problem for the domain dis-
played in Fig. 1. The slag pouring periods and further heating of the cup up to the time of
emptying are considered; it is assumed in the computations that the thermophysical constants
of the cup material are independent of the temperature.
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Fig. 1. Computation
domain.

Taking account of the boundary-value problem presented above for the nonstationary heat
conduction equation in orthogonal curvilinar coordinates, we can write the following [2]:
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We seek the shell temperature in the form of Legendre polynomials of degree N in the variable
x® (—h << x°< h) [1, 2]

N 4 X3
T = ST, P, (Tj

n=0

where 2h(x') is the shell thickness, Pn(XE/h) are Legendre polynomials that are orthogonal in
h

the segment [-h, h], %(L )= (n-%~é;>hn 5 TP, (x3h) dx® are the temperature moments determined
et}

from the system of partial differential equations obtained by applying the projection method
[2] to (1).

The following values of the parameters are taken in the computations: c = 670.4 J/(kg*°K),
p = 7850 .kg/m’, To = 293°K, A = 32.6 W/ (me°K), 64 = 293°K

8:::

{@+ —- inner surface washed by air,

Tp — inner surface in contact with slag,

The slag temperature was calculated from the formula
Ty—T,
p = At————f + T,
where T; = 1473°K, T, = 1323°K At = 120 min; o4, o2, o_ for the sections washed over by air
were calculated from the formula

Te — 04
o =0 477.1078 ———,
s T, -6,
where T, is the temperature on the surface, a7 = 9.31 W/ (m®e°K). For the section of the
surface washed over by the slag
a. = ﬁz—A—‘;ﬁl t+ﬁl,
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Fig. 2. Distribution of the temperature T
(°K) over the dimensionless wall thickness
(x*/h) corresponding to the juncture of the
spherical and conical parts of the cup: 1)
15; 2) 30; 3) 60; 4) 120 min.

where B, = 98.93 W/ (m”+°K), B. = 86.07 W/ (n®<°K).
n

The system of differential equations for T (n = 0, 1, ..., N) was written in the vector

form

ar 0T oT
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where IlA[], ’]Bl[, ilClI are matrices of dimensionality (N + 1) x (N + 1), D is a vector of
dimensionality N + 1 whose elements are formed directly in the FORTRAN program. Equation (2)
was solved by the matrix factorization method [4]. The structure of the program permits solu-
tion of the nonstationary heat conduction problem for axisymmetric thick-walled shells with
different middle surface shapes by inducing insignificant changes. The time to compute the

temperature change per time spacing is 34.5 sec on the ES-1050 computer for N = 3.

Investigations by the method of a numerical experiment indicate a rise in the rate of
convergence of the results obtained as the dimensionality of the coordinate base increases.
If solutions with dimensionalities N = 0 and N = 1 are unacceptable, then it is sufficient to
take N = 3 to obtain a practically exact result; the divergence of the solution is less than
17 for N =4,

The temperature distribution over the cup wall thickness is shown in Fig. 2 for a section
corresponding to the juncture of the sphere with the cone. 1t is established that during the
pouring of the slag into the cup (the duration of the slag pouring period is taken at 20 min)
the temperature change over the wall thickness is substantially nonlinear in nature; at the
end of the pouring period the transverse gradients reach the greatest values (to 15 deg/cm),
then a gradual equalization of the temperature occurs with the lapse of time, and its dis-
tribution over the wall becomes linear.

Application of nonclassical shell theory [2] permitted computation of the temperature
fields not only for the spherical—conical cup being exploited but also the execution of a
comparative thermal analysis of paraboloidal and ellipsoidal shells in which shapes slag cups
can be made. The geometric parameters of the middle surfaces of the shells mentioned were
selected in such a way that they would satisfy the main requirements imposed on the spherical—
conical cups used at this time. The quantity of mesh nodes on the meridians of the paraboloi-
dal and ellipsoidal shells, as well as their mutual location corresponded to the quantity and
location of the nodes for the spherical-conical shell (a certain difference is explained by
the fact that the lengths of the shell meridians differ somewhat), which permitted a compara-
tive analysis of the results.

Changes in the mean temperature gradient T/2h with respect to the wall thickness are
shown in Fig. 3 for two sections (points 8 and 15 on the shell meridians), the first of which
corresponds to the juncture of the sphere and the cone in the sphere—comne cup, and the second
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Fig. 3. Change in the mean temperature gradient T/2h (deg/cm)
with respect te the wall thickness as a function of the time t
(min) for points 8 (a) and 15 (b) on the shell meridians: 1)
sphere—cone; 2) ellipsoidal; 3) paraboloidal.
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Fig. 4. Change in the shell thickness Zh

(m) along the meridians (s is the running
length of the arc of a meridian), m): 1)
sphere—cone; 2) ellipsoidal; 3) paraboloi-
dal shell. Values of the functions at points
A and B correspond to the shell thicknesses
at the points 8 and 15.

is perpendicular to the meridian at a point approximately at its middle {approximately 29
finite-difference divisions were superposed on the shell meridian).

The greatest temperature gradients at point 8 during the whole time period under con-
gsideration were observed in the paraboloidal shell, somewhat smaller ones in the ellipsoidal,
and still smaller in the sphere—cone shell. The pattern changes somewhat at point 15. As
before, the greatest gradients are in the paraboloidal shell, however, the next gradients in
magnitude are in the sphere—cone, and the smallest in the ellipsoidal shell.

It is seen from Fig. 4 on which the change in shell thickness along their meridians is
displayed (s is the running length of the meridian) that at the points being considéred the
paraboloidal shell has the least thickness, which is indeed the reason for the greatest grad-
ients. At point 8 the sphere—cone shell is thicker than the ellipsoidal; hence, the gradi-
ents in this section are less for it. The shell thickness changes with progress along their
meridians. At point 15 the ellipsoidal cup becomes thicker than the sphere—cone; conse-
quently, larger gradients occur in the sphere—cone shell. Therefore, the law of thickness
variation exerts the governing influence on the magnitude of the temperature gradients in
sections normal to the shell middle surface.

Taking account of the closeness of the results obtained for the shells examined, the iaw
of thickness variation for a given weight can be selected for the paraboloidal and ellipsoidal
shells so that the thermal loads acting on them would not exceed the loads on the sphere—cone
shell. 1In that case the paraboloidal and ellipsoidal shells are preferable to the sphere-cone
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since they have a convexity opposing the normal displacements to the middle surface caused
by the thermal loads and a continuous change in the principal radius of curvature along the
meridian,

NOTATION

T, temperature; xl, x®, coordinate system axes coupled normally to the shell middle sur-
face; q*, q*, contravariant components of the thermal flux density vector in the x' and x>
directions, respectively; g, determinant of the metric form; c, specific heat; p, density;
To, initial temperature; O, air temperature; O_, temperature of the medium washing over the
shell at the boundary T_; o4, @2, o—, heat elimination coefficients to the boundaries T4, T,
I'_; At, time period between the beginning of slag pouring and the time of its termination.
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SOLUTION OF THE INVERSE COEFFICIENT PROBLEM OF HEAT CONDUCTION

A, A, Goryachev and V. M. Yudin UDC 536.24.02

An effective algorithm is developed for solving the inverse coefficient problem of
heat conduction. Methods are proposed for improving the nonuniform convergence of
the solution at the domain boundaries,

In the past decade the problem of determining the thermophysical characteristics of
materials in nonstationary heating regimes has attracted the considerable attention of re-
searchers., This is related primarily to the impossibility of determining the mentioned
characteristics by classical methods in a number of cases of practical importance, for
example, for coking materials, as well as to the possibilities being disclosed here of a
substantial rise in the productivity and simplification of experimental investigations. How-
ever, serious difficulties associated with the necessity to solve inverse coefficient problems
of heat conduction occur here, The development of methods to solve these problems was
studied in [1-10]. :

In conformity with [1, 2], and using the method proposed in [11] to calculate the gradi-
ent of the functional of the quadratic residual of experimental and computed temperatures,
an effective algorithm to solve the inverse coefficient problem of heat conduction is given
in this investigation which would assure good accuracy in determining the heat conduction co-
efficient A(T) and the specific heat c(T). ’

Let us consider the solution of the inverse problem for an infinite plate. In order not
to limit the possibilities of the experiment we consider that boundary conditions of the
first, second, and third kinds can be given on the plate surfaces. The temperature distri-
bution in the plate will hence be described by the equation

aT oT . oT
: g AT — ), 0<x<<8, 0TI oy
c(n)e ot 0x ( T 0x ) e
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